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Abstract

Objective: Understanding the longitudinal association of objective sleep and

physical activity with brain amyloid burden and cortical glucose metabolism

has critical clinical and public health implications for dementia prevention in

later life. Methods: We enrolled 118 individuals aged ≥65 years with mild cog-

nitive impairment, who were followed up on from August 2015 to September

2019. All participants continuously wore an accelerometer sensor for 7 consecu-

tive days every 3 months and received annual 11C-Pittsburgh compound-B and
18F-fluorodeoxyglucose positron emission tomography (PET). Sleep and physi-

cal activity parameters were assessed using accelerometer sensor data and PET

imaging was quantified using a standardized uptake-value ratio. Fifty-seven par-

ticipants (48.3%) completed a lifestyle factor assessment and PET imaging over

the 3-year period. A linear mixed-effects model was applied to examine the lon-

gitudinal association of sleep and physical activity parameters with PET imaging

over the 3-year period, controlling for potential confounders. Results: Sleep

efficiency was inversely associated with amyloid uptake in the frontal lobe.

Although sleep duration was positively associated with global amyloid uptake,

particularly in the frontal lobe, their impact was extremely small. However,

physical activity parameters were not significantly associated with the 11C-

Pittsburgh compound-B-uptake. Furthermore, sleep and physical activity

parameters were not significantly associated with cortical glucose metabolism.

Interpretation: Lower sleep efficiency could be an early symptom of greater

brain amyloid burden at the mild cognitive impairment stage. Therefore, the

assessment of sleep may be useful for identifying individuals at higher risk for

brain amyloid burden. Future longer term observational studies are required to

confirm these findings.

Introduction

Mild cognitive impairment (MCI) is a high-risk factor for

the progression to dementia, and the rate of conversion

from amnestic MCI to Alzheimer’s disease (AD) is 10–
15% per year.1 In Japan, the prevalence of MCI among

people aged 65 years and older is 17.0%.2 AD is an

important public health problem with a tremendous emo-

tional and financial burden on patients, caregivers, and

society. Although disease-modifying therapy (lecanemab)

is emerging, efficacy is limited and side effects cannot be

ignored.3 Therefore, determining the modifiable risk

factors of AD is critical in reducing the risk of AD inci-

dence or delaying the onset of AD at the MCI stage. Pre-

vious epidemiological studies have reported the

association of lower educational levels, vascular risk fac-

tors, depression, and smoking with an increased risk of

AD.4,5

However, sleep disorders and physical inactivity are

also major issues in the rapidly aging society. In fact,

approximately 50% of older adults have sleep problems

and 12.5–27.5% of older adults are physically inactive.6–8

Previous population-based prospective studies and meta-

analyses have shown that these inevitable changes were
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associated with subsequent cognitive decline or an

increased risk of AD in older adults.9–11 Although studies

of human and animal models of AD suggest that sleep–
wake cycle and physical activity may affect the production

or clearance of amyloid b (Ab),12,13 it remains unclear

whether sleep disturbance and physical inactivity are early

symptoms or causes of AD pathology. This is because

most of the population-based prospective studies of the

association of subjective or objective sleep and physical

activity with brain amyloid burden had cross-sectional

designs.14–34 As the sleep–wake cycle, physical activity,

and brain amyloid burden change with aging,35–37 longi-

tudinal studies of the association between the trajectories

of sleep, physical activity, and amyloid biomarkers over

time would provide more valuable evidence and dynamic

perspectives on their associations than cross-sectional

studies. Moreover, subjective self-reported questionnaires

may often be problematic with regard to their reliability

and consistency due to recall bias or misclassification

among older adults with cognitive decline. In contrast, an

accelerometer sensor is a noninvasive and cost-effective

tool that can objectively and continuously measure sleep

parameters and physical activity without recall bias or

misclassification.38,39

In this prospective cohort study, we objectively mea-

sured lifestyle factors using accelerometer sensors and

evaluated the brain amyloid burden and cortical glucose

metabolism using 11C-Pittsburgh compound-B positron

emission tomography (PiB-PET) and 18F-

fluorodeoxyglucose (FDG)-PET, respectively, in older

community-dwelling Japanese individuals with MCI from

2015 to 2019. To the best of our knowledge, few other

cohort studies have focused on the longitudinal associa-

tion of sleep or physical activity with AD biomarkers in

older individuals. Therefore, this study aimed to deter-

mine the longitudinal association between objective sleep

and physical activity based on accelerometer sensor data,

brain amyloid burden, and cortical glucose metabolism

over a 3-year period in older individuals with MCI. We

hypothesized that the sleep or physical activity parameters

would be longitudinally associated with PiB-uptake

over time.

Materials and Methods

Participants

The Usuki study was a prospective cohort study of

community-dwelling adults aged ≥65 years without

dementia.38,39 This was conducted from August 2015 to

September 2019 in Usuki, Oita Prefecture, Japan, and it

explored lifestyle risk factors for dementia. In the present

study, we included 118 adults with MCI [52 men (44.1%)

and 66 women (55.9%), with a mean age of 75.7 years

(standard deviation [SD], 5.8) and a mean educational

level of 11.2 years (SD, 1.9)] who were enrolled in the

imaging process of the Usuki study. All participants wore

a wristband sensor (SilmeeTM W20, TDK Corporation,

Tokyo, Japan) continuously—except for when bathing—
for 7 consecutive days every 3 months (four times per

year) to avoid measurement errors due to seasonal differ-

ences in sleep and activity patterns.40 Valid sensing data

was defined as at least 3 days in one period and two

periods in a year.41 In addition, PiB- and FDG-PET scans

and demographic data collection, including that of age,

sex, educational level, medication history, and dementia

diagnosis, were conducted every year by trained medical

staff. The number of adults with MCI from whom both

valid accelerometer sensor data and PET imaging were

completely collected during the follow-up was 95 (80.5%)

in the second year and 57 (48.3%) in the third year

(Fig. 1). The diagnosis of MCI was made when partici-

pants had a Clinical Dementia Rating score of 0.5 and

unimpaired activities of daily living.42 Furthermore, all

the participants had Hachinski ischemic scores of 4 or

less.43 We excluded participants with a history of other

neurological or psychiatric disorders, severe cardiac fail-

ure, severe hepatic or renal dysfunction, severe head

trauma, alcoholism, and stroke, as well as those undergo-

ing treatment for cancer.

Accelerometer sensor data

Sleep and physical activity were calculated using the sum

of the sensor data per day. Sleep parameters included the

total sleep time (TST), sleep efficiency, waking frequency,

and time awake after sleep onset (WASO). The time of

sleep onset was determined as the beginning timepoint of

the first continuous block of 20 min of sleep without

movement. The TST was defined as the sum of minutes

without more than 5 min of movement from sleep onset

to the end of sleep. Moreover, nocturnal awaking was

defined as a continuous block of 5–90 min of movement

after sleep onset. Sleep efficiency was defined as the per-

centage of TST in the total time in bed, while WASO was

calculated as the total amount of time spent awake after

sleep onset. Furthermore, naptime was calculated from

the time spent resting without moving during the

daytime.

In addition, physical activity was assessed continuously

by a three-axis accelerometer, and the data were summa-

rized in 1-min intervals. Steps were defined as the fre-

quency range of 2–3 Hz of acceleration. Additionally,

based on metabolic equivalents (METs), the intensity of

activity was divided into light physical activity (LPA, 1.6–
2.9 METs), moderate-to-vigorous physical activity
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(MVPA, ≥3.0 METs), and sedentary behavior (≤1.5
METs), as previously described.44 The total amount of

time spent in each physical activity was measured when

the participants were awake. However, data (according to

the heart rate) indicating that the wristband sensor had

been removed were excluded. The measurement accuracy

for sleep time and walking steps was verified using the

comparison between the sensor data and video observa-

tions in healthy individuals aged 20–60 years.38 Notably,

the sleep duration and walking steps from the wristband

sensor significantly correlated to those from video obser-

vation (Pearson correlation: r = 0.9995 and r = 0.9869,

respectively).

Positron emission tomography scans

PET images were acquired in the three-dimensional

scanning mode on a Siemens Biograph mCT PET scan-

ner (Siemens, Erlangen, Germany). All participants

underwent a rapid bolus intravenous injection of 11C-

PiB (mean, 548 MBq; SD, 53 MBq) with a saline flush

and received static PET scanning over 50–70 min after

injection. Additionally, all participants underwent a rapid

bolus intravenous injection of 18F-FDG (mean,

170 MBq; SD, 30 MBq) with a saline flush and received

static PET scanning over 40–60 min after injection. Sub-

sequently, spatial normalization of both the PiB and

FDG scans to a customized PET template in the Mon-

treal Neurological Institute reference space was

conducted using Statistical Parametric Mapping Version

8 (Wellcome Trust Center for Neuroimaging, London,

UK). Furthermore, the MarsBaR toolbox for Statistical

Parametric Mapping (MRC Cognition and Brain Sci-

ences Unit, Cambridge, UK) was used to set the regions

of interest (ROIs) for characteristic amyloid burden or

hypometabolism areas in patients with AD.45,46 These

ROIs included the frontal lobe, temporoparietal lobe,

and posterior cingulate gyrus.

Both PiB- and FDG-uptake were measured quantita-

tively using a standardized uptake-value ratio (SUVR).

The regional PiB- and FDG-PET SUVRs were calculated

as the ratio of the voxel number-weighted average of the

median uptake in each ROI to that in the cerebellar cor-

tex. In addition, the global FDG- and PiB-PET SUVRs

were computed as the single mean value for the regional

SUVRs across a set of ROIs. Global cortical SUVR values

≥1.4 were considered positive for PiB.

Apolipoprotein E phenotype

The Apolipoprotein E (ApoE) phenotype was examined

using the enzyme-linked immunosorbent assay kit for

human apolipoprotein E4/Pan-ApoE (MBL Co., Ltd.,

Woburn, USA). This sandwich ELISA kit can quantify the

amount of ApoE4 or total ApoE using an affinity-purified

polyclonal antibody targeting ApoE and monoclonal anti-

body targeting APOE4. According to previous methods,

we defined the homozygote (e4/e4) or heterozygote (e2/

Figure 1. The flow of participant recruitment. One-hundred-and-eighteen participants with mild cognitive impairment underwent PET imaging in

the first year. Subsequently, 95 (80.5%) and 57 (48.3%) participants with MCI underwent PET imaging in the second and third years,

respectively. MCI, mild cognitive impairment; PET, positron emission tomography.
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e4, e3/e4) APoE4 phenotype as a ratio of ApoE4 and

ApoE of 0.3 or higher.47

Statistical analysis

Our data analysis primarily aimed to examine the dynamic

association of sleep and physical activity with brain amy-

loid burden or cortical glucose metabolism over a 3-year

follow-up period in all participants who completed both

valid accelerometer sensor data and PET imaging. We used

a linear mixed-effects model to determine whether the

sleep and physical activity parameters were longitudinally

associated with the global or regional uptake for both PiB-

and FDG-PET after controlling for age, sex, educational

level, and ApoE4 status. This model controls for the depen-

dency between repeated measurements of the same partici-

pants, the initial level of cognitive function, and missing

values. The effect of the follow-up time was modeled as dis-

crete, and the interaction between time-varying sleep and

physical activity parameters and follow-up time was not

included in the model due to clinical and statistical difficul-

ties in parameter interpretation. In addition, a compound

symmetry structure was specified for within-subject serial

correlation among repeated measures of PiB- and FDG-

PET imaging by including a random-intercept term in the

model. Overfitting of the model was controlled using the

Akaike Information Criterion. We used the JMP Pro 14.2.0

(SAS Institute Japan Ltd., Tokyo, Japan) and IBM Statisti-

cal Package for the Social Sciences Statistics Version 25.0

(IBM Corp., Armonk, NY, USA) for statistical analyses,

and a p-value <0.05 was considered to be statistically

significant.

Ethics

This study was conducted following the Declaration of

Helsinki and was approved by the local ethics committee

(study approval numbers: UMIN000017442). All partici-

pants provided written informed consent. This research

complies with the Strengthening the Reporting of Obser-

vational Studies in Epidemiology reporting guideline.

Results

Demographic and clinical characteristics

Table 1 summarizes the annual changes in demographic

characteristics and PiB- and FDG-uptake values of all par-

ticipants. In total, 17 out of 118 (14.4%) individuals had

ApoE4 and 27 (22.9%) were included in the greater PiB-

uptake group according to a PiB-PET SUVR cutoff of 1.4.

Table 2 summarizes the annual changes in accelerometer

sensor data.

Longitudinal association between sleep and
physical activity parameters with PiB- and
FDG-uptake

TST was positively associated with the global and frontal

PiB-uptake after controlling for age, sex, educational level,

and ApoE4 status (Table 3) (global: estimate, 0.00048;

standard error, 0.00022; P = 0.0332; frontal: estimate,

0.00053; standard error, 0.00022; P = 0.017). Moreover,

sleep efficiency (%) was inversely associated with the

frontal PiB-uptake (Table 3) (estimate, �0.02116; stan-

dard error, 0.00944; P = 0.0267). These results indicate

that a one minute increase in TST would be associated

Table 1. Clinical and demographic characteristics of participants with

mild cognitive impairment.

Characteristics

First year

(n = 118)

Second year

(n = 95)

Third year

(n = 57)

Mean (SD) Mean (SD) Mean (SD)

Age, years 75.7 (5.8) 76.2 (5.5) 75.8 (5.7)

Sex (M:W) 52:66 42:53 28:29

Educational level,

years

11.2 (1.9) 11.2 (1.8) 11.5 (1.9)

BMI, kg/m2 23.2 (3.3) 23.6 (3.2) 23.6 (3.1)

ApoE4, n (%) 17 (14.4) 14 (14.7) 12 (21.1)

Global PiB-

uptake

1.16 (0.51) 1.16 (0.52) 1.19 (0.56)

Global FDG-

uptake

0.92 (0.08) 0.92 (0.08) 0.91 (0.08)

ApoE4, apolipoprotein e4; BMI, body mass index; FDG, 18F-

fluorodeoxyglucose; M, men; min, minute; PiB, 11C-Pittsburgh

compound-B; SD, standard deviation; W, women.

Table 2. Wearable sensor data of participants with mild cognitive

impairment.

Characteristics

First year

(n = 118)

Second year

(n = 95)

Third year

(n = 57)

Mean (SD) Mean (SD) Mean (SD)

TST, min/day 404.9 (68) 413.4 (73) 412.2 (76.5)

Sleep efficiency,

%/day

95.1 (3.6) 95.2 (3.7) 95.3 (3.4)

Waking frequency,

times/day

0.52 (0.36) 0.52 (0.38) 0.49 (0.32)

WASO, min/day 20.2 (14.5) 20.6 (15.9) 19.7 (13.5)

Naptime, min/day 43.1 (32.3) 45 (35.6) 49.5 (38.7)

Walking steps,

steps/day

4619.7 (2726.7) 4438.4 (2781.8) 3942.4 (2288.5)

LPA, min/day 20.4 (16.6) 20.8 (15.3) 18.3 (11.9)

MVPA, min/day 23.7 (18) 21.9 (18.8) 19.9 (15.1)

Sedentary, min/day 785.6 (74.9) 780.8 (75.8) 771 (80.9)

LPA, light physical activity; min, minute; MVPA, moderate-to-vigorous

physical activity; SD; standard deviation; TST, total sleep time; WASO,

time awake after sleep.
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with an increase of 0.00048 in global PiB SUVR or

0.00053 in frontal PiB SUVR and a 10% increase in sleep

efficiency would be associated with �0.2116 in frontal

PiB SUVR. When the linear mixed-effects model was con-

ducted using data from 57 adults who had completely

valid wearable sensor and PET imaging data for 3 years,

it was found that TST remained positively associated with

the global and frontal PiB-uptake (global: estimate,

0.00057; standard error, 0.00029; P = 0.049; frontal: esti-

mate, 0.00065; standard error, 0.00028; P = 0.0255).

However, other sleep parameters—such as waking fre-

quency, WASO, and naptime—and physical activity

parameters were not significantly associated with brain

amyloid burden. Furthermore, there was no significant

association of sleep and physical activity parameters with

global and regional FDG-uptake.

Discussion

The present study examined the longitudinal association

of the objectively and simultaneously measured sleep and

physical activity parameters with brain amyloid burden

over a 3-year follow-up period. We found that a longer

sleep duration and lower sleep efficiency was significantly

associated with greater brain amyloid burden, particularly

in the frontal lobe at the MCI stage. These novel and

interesting findings are valuable as they have the potential

to clarify the relationship between sleep and AD pathol-

ogy in older individuals. Moreover, the several strengths

of this study include the prospective population-based

cohort, the objective measurement of lifestyle factors

every 3 months, and the performance of PET imaging

every year over the 3-year follow-up.

This longitudinal objective analysis showed that TST

was positively associated with the global and frontal PiB-

uptake and sleep efficiency was inversely associated with

the frontal PiB-uptake over 3 years. Notably, a previous

study showed that sleep disturbances affect 25–40% of

patients with AD and are bidirectionally linked to AD

pathology.11 Given the prolonged period of Ab accumula-

tion during the asymptomatic preclinical phase, sleep dis-

turbances are assumed to be either an early symptom of

AD pathology and/or a risk factor for AD pathology.12

Several studies have examined the association of subjec-

tive or objective sleep parameters with brain amyloid bur-

den using amyloid PET imaging or the Ab42 level in the

cerebrospinal fluid in cognitively healthy adults.14–27 Fur-

thermore, the results of subjective analysis using self-

reported questionnaires have shown that shorter or longer

sleep durations, longer sleep latency, lower sleep quality,

excessive daytime sleep or somnolence, and more sleep

problems are associated with greater brain amyloid

burden.14–21 Similarly, the results of objective analysis

have shown that increased sleep latency, sleep fragmenta-

tion, lower sleep efficiency on wearable sensors, and dis-

ruption of slow-wave activity on polysomnography are

associated with greater brain amyloid burden.22–27 How-

ever, these studies only assessed sleep parameters and

brain amyloid burden at baseline. One study has reported

that low sleep efficiency and decreased slow-wave activity

on polysomnography at baseline were longitudinally asso-

ciated with increased brain amyloid burden, whereas the

association of TST or WASO with increased brain amy-

loid burden over time was not significant.48 In contrast,

the current study assessed both objective sleep parameters

and brain amyloid burden over a 3-year period.

We found the association of an increase of one minute

in TST with an increase of 0.00048 in global PiB SUVR or

0.00053 in frontal PiB SUVR, and the association of a 10%

increase in sleep efficiency with �0.2116 in frontal PiB

SUVR. The finding of an association between lower sleep

efficiency and greater brain amyloid burden in this study

was consistent with those of previous objective studies.

Moreover, considering that the annual increase in brain

amyloid burden is estimated to be 0.043 SUVR in amyloid-

positive adults with normal cognition,49 a few percent

improvement in sleep efficiency would be equivalent to

1 year of brain amyloid burden. Although we found that a

Table 3. Linear mixed-effects models estimating the longitudinal associations of sleep and physical activity with PET imaging.

Total sleep time Sleep efficiency

Estimate SE P-value Estimate SE P-value

PiB-uptake

Global 0.00048 0.00022 0.0332* �0.01717 0.00947 0.072

Frontal lobe 0.00053 0.00022 0.017* �0.02116 0.00944 0.0267*

Temporoparietal lobe 0.00034 0.00022 0.1348 �0.0108 0.0096 0.2626

Posterior cingulate gyrus 0.00054 0.00031 0.0774 �0.01211 0.01309 0.3566

Adjustments were made for age, sex, educational level, and ApoE4 status.

PET, positron emission tomography; PiB, 11C-Pittsburgh compound-B; SE, standard error.

*P < 0.05.
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longer sleep duration was associated with greater brain

amyloid burden in all the participants as well as 57 partici-

pants who completed a lifestyle factor assessment and

annual PET, the impact of TST on brain amyloid burden

was negligible. We suggest that the impact of sleep effi-

ciency on brain amyloid burden may be more robust com-

pared to sleep duration. However, the clinical relevance of

increased brain amyloid burden due to lower sleep effi-

ciency should be interpreted with caution. The causal rela-

tionship between sleep efficiency and brain amyloid burden

remains unclear. Moreover, Ab aggregation in the brain

occurs 20 years before dementia onset50 and PiB-uptake

only weakly correlates with cognitive tests.51 However,

lower sleep efficiency may be associated with clinical out-

come in adults with MCI through brain amyloid burden

because of the association between increased brain amyloid

burden and a higher risk of developing dementia.37 Further

longitudinal studies are required to confirm whether these

effect the amount of sleep efficiency or sleep duration on

the brain amyloid burden in this study that is meaningful

for cognitive function.

Previously, potential mechanisms linking sleep distur-

bance and brain amyloid burden have been identified in

human and animal models of AD.52,53 Notably, AD

mouse models and older adults with brain amyloid bur-

den had the disruption of physiological fluctuations in

amyloid b.52 Additionally, acute sleep deprivation

increased the interstitial fluid levels of soluble amyloid b,
leading to amyloid plaque formation in both the mouse

model of AD and the human brain.52,53 Therefore, these

mechanisms may explain the association between a lower

sleep efficiency and greater brain amyloid burden in this

study. Similar to our findings, a previous study showed

that an increased sleep duration (from 7–8 to ≥9 h) over

8.5 years was associated with an increased risk for cogni-

tive decline.54 Furthermore, another study showed that a

longer sleep duration ≥9 h was associated with a higher

risk of dementia-specific mortality.55 These studies suggest

that a sleep duration of longer than 7 h per night may be

an early symptom of dementia. Moreover, prolonged

sleep was considered as a marker of neurodegeneration

based on the finding of an association between prolonged

sleep and total brain volume.56 Therefore, our findings

support the hypothesis that a longer sleep duration is

consequences of the AD pathology and are potential early

symptoms of greater brain amyloid burden at the MCI

stage. Another possible mechanism for the association

between a longer sleep duration and brain amyloid bur-

den is underlying health problems. Chronic inflammatory

diseases, such as cardiovascular disease and Type-2 diabe-

tes, were associated with systemic inflammation and sleep

disturbances.57,58 Moreover, chronic inflammation may

contribute to prolonged sleep duration and AD

pathology.59–62 Therefore, medical comorbidities may be

associated with increased functional disability and seden-

tary behavior, which can overestimate sleep duration as

participants spent more time in bed due to inactivity.

Moreover, in our study, sleep duration and efficiency

were associated with brain amyloid burden, particularly

in the frontal lobe. Several previous studies assessing

brain amyloid burden using amyloid PET studies have

shown the association of poor sleep quality or a short

sleep duration with greater brain amyloid burden, partic-

ularly in the precuneus, frontal lobe, angular gyrus, or

cingulate gyrus, which are known to be affected by amy-

loid b at an early stage of AD.14–18 Therefore, our find-

ings are partially consistent with those of previous

studies.

However, in this study, we did not find a longitudinal

association of objective physical activity parameters with

PiB- and FDG-uptake in older adults with MCI. In con-

trast, several previous cross-sectional studies of subjective

or objective physical activity parameters and brain amy-

loid burden using amyloid PET imaging or the Ab42 level

in the cerebrospinal fluid28–34 have shown that higher

levels of physical activity were associated with less brain

amyloid burden in cognitively healthy older adults.28–31

Similar to our study, some investigations have found no

significant association between self-reported physical

activity and brain amyloid burden in older individuals

with MCI or AD.32–34 A possible explanation for this dis-

crepancy may be that the association of physical activity

with brain amyloid burden may be found only in the pre-

clinical phase. Furthermore, these studies had differing

study designs and methods of measuring physical activity.

The present study had several limitations. First, the

potential direction of causality could not be determined

due to the relatively short follow-up period. Moreover,

the linear mixed-effects model could not be conducted in

the subgroup classified based on the PiB-uptake values

due to its relatively small sample size of MCI adults with

greater brain amyloid burden. The PiB-uptake values were

skewed to low amyloid accumulation, indicating early

stages of MCI. Second, the 61 participants who could not

receive PET imaging in the third year were excluded from

the analysis and the individuals with dementia or depres-

sion could not be completely excluded based on the col-

lected information of the presence or absence of

dementia. Third, we could not verify the measurement

accuracy for sleep efficiency and WASO other than sleep

time, and non-rapid eye movement or rapid eye move-

ment sleep stages were not evaluated by polysomnogra-

phy. Although sleep-disordered breathing is associated

with brain amyloid deposition and dementia, and its

prevalence increased with age,63–65 that was not evaluated

in this study. Fourth, global cognitive function generally
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correlates with tau pathology rather than amyloid pathol-

ogy in AD51. The clinical relevance of increased brain

amyloid burden due to lower sleep efficiency or pro-

longed sleep duration remains unclear.

In conclusion, we confirmed the longitudinal associa-

tions of objectively measured sleep duration and efficiency

with brain amyloid burden over a 3-year follow-up in

older individuals with MCI. These results suggest that a

lower sleep efficiency could be an early symptom of

greater brain amyloid burden in later life. Therefore, the

assessment of sleep quality may be a cost-effective and

noninvasive tool for identifying individuals at a higher

risk of brain amyloid burden. However, future studies

with longer follow-up periods are required to further clar-

ify the causal relationship between sleep and amyloid

pathology. Additionally, examining the influence of the

clearance of Ab on sleep duration or efficiency may pro-

vide valuable information for the validation of our results

when anti-amyloid therapy becomes available.
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